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For a class of models with Ginzburg Landau-Wilson functions of a local form 
it is proved that the spectrum of a renormalization group operator which is 
linearized near a fixed point is discrete, real, and limited from above. In the 
framework of a local model, critical exponents for the limit n=  oe are 
calculated. 

KEY WORDS: Renormalization group; critical phenomena; phase 
transitions; spherical model. 

The momentum-space renormalization-group (RG) approach has proved 
to be extremely successful in studying critical phenomena at phase 
transitions. One of the versions of this approach explores an exact RG 
equation first derived by Wilson/1/ While somewhat cumbersome, this 
approach gives a general insight into the structure of the theory. It also 
allows one to develop new approximation schemes which do not use 
perturbation theory (2-5) as well as to find alternative expansions to e and 
1/N expansions. (6) 

In this communication we consider a new approximation to an exact 
renormalization group (RG) equation for critical phenomena. This 
approximation is based on the exact RG equation developed by the 
authors/v) The equation incorporates Fisher's exponent q, which is numeri- 
cally small for most of systems. This gives a way to significantly simplify 
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the equation. Below we use the simplified equation to prove some general 
statements in RG theory. Naturally the proof given below is not rigorous, 
because it does not use an exact RG equation. However, we believe that 
the simplification mades does not affect the correctness of the fundamental 
statements. We also demonstrate that the use of our equation is an easy 
way to obtain critical exponents for the spherical model ~8) universality 
class. 

Let us consider the Ginzburg-Landau Wilson functional for a transla- 
tionally invariant isotropic system 

HEq3] = HoEqS] + HiE(o] ( I )  

H~ = �89 fq qzS l(q2/A2) [qS(q)12 (2) 

Hz[(o] = 21 - -  2 k  gk(ql, q* ;'"; qk, q~)(2X) a 6 (qi + q,-) 
k = 0  1 , q i ; . . . ; q k , q E  i 1 

k 

x 1-[ [qS(q,). q~(q,-)] (3) 
i = 1  

where ~ is an n-component vector, vertices g~(ql, q~;...;qk, q~) are 
invariant with respect to permutations of any pairs of momenta qi, q~ and 
qi, qy with each other and among themselves, 

6(q) = (27r)-d6q, o V, fq = V - l ~ = f  daq 
q ( 2 ~ )  a 

and V is the system volume. The function S(x) provides a momentum 
cutoff on a momentum A. It is monotonic with S ( x = 0 ) =  1 and 
limx~ o~ S(x)x m= 0 for any m. In particular, the choice of S(x)= O(1 - x ) ,  
where O is the step function, provides a sharp cutoff. 

The exact RG equation obtained in ref. 7 has the form 

/:/, [~  ] - ~/4,  [ ~ ]  

=vdaHz[(o] Vfq lfq (qZ) ~?V t--~ tl(q)--~ q2tl(q)S I -y [~(q)lZ 

+ ~uEd+ 22 ~l(q) C~176176 J 6~(q) 

+fqh(qlLaco(~.-~(---q)--~(----~ 6~(q) _1 (4) 
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Here 

h(q) = q -2A2 dS(qZ/A2) 
dA 2 (5) 

and r/(q) is the function which was used in ref. 7 to eliminate redundant 
operators from the RG equation. At a fixed point of Eq. (4) the value ~/*(0) 
is equal to the Fisher exponent. 

The general RG equation (4) is very complicated. The main obstacle 
in the way of its analytical investigation is that it includes functional 
derivatives with respect to field variables ~(r). Therefore, all of the effects 
of the RG equation analysis are associated with its reduction to sets of 
differential equations containing only a few lowest vertices. At the same 
time, it may be useful to retain in the Ginzburg-Landau-Wilson functiona ! 
vertices of arbitrarily high powers in the field ~b(r). This makes it necessary 
to search for approximations for the exact RG equation which are not 
based on a perturbation theory. One of these ways is to use the equation 
for the local Ginzburg-Landau-Wilson functional. 

Because of the dependence of the vertices ~ upon momenta (or 
coordinates), the functional H1 is a nonlocal form with respect to vector q~ 
powers. Even if the initial functional/ /1 is a local one, 

H) ~  k 21 2~gk fddr[ (~176  (6) 
k - O  

nonlocalities (a dependence of gk on coordinates or momenta) will be 
generated according to Eq. (4). One might try to find H~ as the sum of 
local and nonlocal parts H~= H~ ~ + H} 1>. Then Eq. (4) is reduced to the 
form 

/:/z [5  ] - k H , [ 5 ]  = kH~~ - 2fq h(q) 6H)~ c S H ~ t ) [ 5 ] ~  5q5( - q) 

(7) 

Due to the function ~/(q) an action of the operator /~ on H~ ~ generates 
contributions to the nonlocal functional. On the other hand, the function 
q(0) is arranged in such a way that even its value at q = 0 ,  i.e., t/(0), 
contains information about the functional's nonlocal structure. At the same 
time, the Fister exponent t/(0) is numerically small. Ignoring ~/(0) in the 
equation which describes the evolution of the local functional should not 
seriously affect the final result. The problem of the direct contribution of 
/~H~ 1) to H~ ~ is more complicated because it may be impossible to 
eliminate a contribution to /:/t ~ from the nonlocal part of a functional in 
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the general case. In principle, the assumption that all nonlocal vertices of 
a functional are small may seem natural, but is not correctly substantiated. 
Nevertheless, if one assumes that this proposition is valid and ignores the 
contributions mentioned above, then the equation for H5 ~ separates. In 
this case one has 

/ ; / ) o )  = " - H ( O )  R(,? = o )  , (8)  

Taking into consideration that the functional H~ ~ has the form (6), this 
equation can be written for the function f ( ~ )  in the form 

d -  2 q3V+,f+ V 2 f  - (V~of) 2 ?=dr-- T -  (9) 

where 

n ~0~ 8 f  

In constrast to Eq. (7), we have obtained an ordinary partial differen- 
tial equation. Since Eq. (9) is an equation for the functional containing all 
powers of the field (p(r), one can obtain a number of general results. 

The fixed points of Eq. (9) are evidently given by the solution of the 
equation 

d - 2  
df* (oV~f* + g2 f*-(V+,f*)z=o (10) 

2 

We do not restrict ourselves by any assumptions with regard to solutions 
f*(qS). We assume only that the function f*(qS) is a limited one at any ~o 
except at infinitely remote points, and consider the equation for eigenvalues 
2. After linearization of Eq. (7) near a fixed point, one has 

2 20=dO- (oV~O+V+,O-2V~of* "V~oO (11) 

where 0(qS)= f(qS)-f*((~) .  
In critical phenomenon theory based on RG equations, there is a set 

of questions. Is the spectrum of the linearized RG operator discrete 
everywhere? Is it limited from the above? Are all eigenvalues 2 real? 
Positive answers to all these questions are very desirable for applying 
critical phenomenon theory, since otherwise serious contradictions are 
possible between its initial postulates and the results of particular calcula- 
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tions. Equation (11) allows us to answer these questions in the framework 
of the local approximation. 

We carry out the replacement of variables 0 -~ Z in the following form: 

0($) = Z(qS)exp I d 8  ---~2 ~52+ f*(qS) 1 (12) 

Direct substitution of this relation into Eq. (11) transforms the latter into 
the Schr6dinger-type equation 

V~Z+ [ ( d - 2 ) - q ( C o ) ] z = O  (13) 

with the "potential" 

- - - - ~ - -  n + d f * ( ~ o )  (14) 

It can be shown (9) that at the first e-approximation, Eq. (13) leads to 
the correct critical exponents for the n-vector isotropic model. 

The structure of the spectrum of Eq. (13) is determined by the 
behavior of the "potential" q(qS) at (p2~ oo. Note that when q)2~ o% 
Eq. (12) is satisfied by the choice f*(qS)~ (~0 2 only. Thus, when (~0 2---~ 0(2) one 
has q ( ~ ) ~  oo. Once this condition is satisfied, one has the following 
spectrum theorems(l~ 

1. All eigenvalues 2k are real. 

2. The spectrum {2k} is limited from the above, so 2k~< 
d -  min[q(~0)]. 

3. The spectrum is discrete [the requirement q(cp)~ +oo when 
(o 2 -~ oo is of importance starting from this item only]. 

4. Only a finite number of 2k > 0 exist. 

5. The eigenfunctions Ok have exactly k zero points. 

For the trivial (Gaussian) fixed point functions Ok can be determined 
explicitly. It is easy to verify that they are Laguerre polynomials 
Ok = L~ n/2 I~((P) with the eigenvalues 2 k = d + (2 - d)k .  Thus, the 
statements 1-5 appear to be valid. 

The Limit n ~ oo. In this limit Stanley ~n) showed that the n-vector 
model reduces to the spherical model. (8) Equations (9) for the local 
Ginzburg-Landau-Wilson functional allows one to obtain critical 
asymptotics in the case n --* oo very easily. 
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Let us rewrite Eq. (9) using spherical coordinates. For an isotropic 
system one has 

df d2f n - 1  df ( df ~ 2 
f = df - (p --~ ~o d(p \ d(p / (15) 

At the limit n = oe this equation reduces to 

j~=dy-  [ ( d -  2 ) x -  2] yx-4xy2x (16) 

where x = (p2/n, y =fin. After linearizing Eq. (16) near a fixed point y* one 
obtains an equation for the eigenvalue problem 

20 = dO - [ ( d -  2)x - 2] 0x + 8xyxOx (17) 

where 0 is a perturbation to the fixed point solution y*. For  the trivial 
fixed point, Eq. (17) leads to )t1=2, and one has Gaussian critical 
exponents. The equation for a nontrivial fixed point can be rewritten in the 
form 

dx 
2y*(2y* - 1) ~ + ( d -  2)x - 2 + 8xy* = 0 (18) 

Using (18), one can simplify the equation for 0, 

dO 
( , ~ - d ) O -  * * _  - 2yx (2yx 1 ) -  (19) 

dye* 

This equation can be integrated: 

0 = c I 2y*/(1 - 2yx* )l (a- ~)/2 (20) 

where c is a constant. The perturbation is analytic for positive integer 
exponents: d -  )~ = 2m. Taking into account that the exponent q in the local 
model is equal to zero, one obtains the well-known critical exponents 
for the spherical model: v = 1/21 = ( l ( d - 2 ) ,  7 = v(2 - q) = 2 / ( d - 2 ) ,  
c~= (d -Z ) / (d -4 ) ,  and fl = �89 
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